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Enhancement of heat and/or mass transfer via turbulence is often not feasible for highly viscous, non-
Newtonian or shear sensitive fluids. One alternative to improve transport within such materials is chaotic
advection, whereby Lagrangian chaos occurs within regular (non-turbulent) flows [J.M. Ottino, The Kine-
matics of Mixing: Stretching, Chaos and Transport, Cambridge University Press, Cambridge, 1989]. Com-
plex interactions between chaotic advection and diffusion yields enhanced dispersion, and the topology
of the Lagrangian dynamics is governed by the set of control parameters for the flow device. What param-
eter set maximises scalar dispersion for a given fluid rheology and diffusivity? Most studies to date have
only considered a handful of points in the parameter space 2, but as this space may be large and the solu-
tion distribution complex (fractal), robust optimisation requires detailed global resolution of 2. By util-
ising a novel spectral method [D.R. Lester, G. Metcalfe, M. Rudman, H. Blackburn, Global parametric
solutions of scalar transport, J. Comput. Phys. (2007). doi: doi:10.1016/j.jcp.2007.10.015] which exploits
the symmetries often present in chaotic flows, we can resolve the asymptotic transport dynamics over 2,
facilitating the identification of optima and elucidating the global structure of transport. We employ this
method to optimize scalar transport for both Newtonian and non-Newtonian fluids in a chaotic mixing
device, the Rotated Arc Mixer (RAM). Significant (up to sixfold) acceleration of scalar transfer is observed
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at Peclét number Pe = 10°, which furthermore increases with Pe.

Crown copyright © 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Motivation

Many industrial processes require rapid transport of heat and/
or mass within highly viscous or non-Newtonian materials such
as emulsions, suspensions, slurries and pastes. For example, food
sterilization demands uniform heating of shear sensitive or tem-
perature sensitive foodstuffs within a narrow temperature range,
and reaction of biological agents requires gentle yet rapid mixing
of reagents as well as precise temperature control to inhibit unde-
sirable side reactions.

For high viscosity fluids, diffusion and natural convection alone
are generally insufficient to achieve the required heat and mass
dispersion rates, so forced convection is also required. However,
traditional approaches such as introduction of turbulence are often
not feasible for highly viscous, non-Newtonian or shear sensitive
materials due to large energy costs, complex rheology, and some-
times delicate nature of these materials. With these considerations
in mind, a promising method to enhance transport characteristics
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of highly viscous or non-Newtonian materials is chaotic advection
[12], whereby chaotic fluid particle paths arise from a velocity field
which may be non-turbulent, and in some cases even completely
steady. Lagrangian chaos can be achieved even within Stokes flow
and so this method is attractive for processing of shear-sensitive
fluids.

1.2. Background

While chaotic advection directly enhances transport of passive
entities (i.e. mixing of non-diffusive tracers), these principles also
apply to dissipative systems, e.g. the transport of diffusive species
or heat. Due to complex interactions between kinetic advection
and dynamic molecular transport processes, the fundamentals of
chaotic advection-diffusion are not fully understood [4,22], how-
ever, the potential benefits of such phenomena are substantial.
From a practical perspective, what is the magnitude of these ben-
efits, and how can we exploit them?

Chaotic advection devices often involve a number of variable
design and operating parameters which must be optimised for
the process at hand. For non-diffusive mixing, global chaos is
desirable, whereas for other applications, different protocols may
be preferential. For diffusive mixing or heat transfer, the relative
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timescales of advection and diffusion must be accounted for. In all
but trivial flows, the optimum set of control parameters cannot be
determined analytically, so experimental or numerical investiga-
tion is required. As the control parameter space (denoted 2) can
be large, and results herein suggest the transport rate has a com-
plex (fractal) distribution, high-resolution global exploration of 2
is required to robustly identify global optima. Until recently, the
computational overhead of this operation has been prohibitive,
hindering development of enhanced transport devices based upon
chaotic advection. To date, most studies involving enhancement of
heat transfer or diffusive mixing via chaotic advection have consid-
ered only a handful of points within 2 [6,2,16,14]; in these cases it
is unlikely the global optimum has been achieved.

Diffusive entities such as heat and mass can be active scalars,
in that their distribution influences the flow field. However, very
often the fluid velocity field is independent of their distribution,
in which case they can be considered passive. For heat and mass
transfer, such decoupling corresponds to neglecting changes in
density, surface tension and viscosity with temperature and spe-
cies concentration. Under such conditions, heat and mass trans-
fer is governed by advection and diffusion, and henceforth we
refer to the resultant dispersion as scalar transport. When the
fluid velocity field is independent of the scalar distribution, a no-
vel spectral method [8] is applicable which exploits the symme-
tries of chaotic flows, facilitating rapid and detailed global
resolution of 2. Solutions to the advection-diffusion equation
(ADE) governing scalar transport are given in terms of so-called
“strange eigenmodes” [9]. In the case of periodic advective
velocity fields, strange eigenmodes are exponentially decaying
periodic patterns. Eventually the slowest decaying strange eigen-
mode dominates, and so the asymptotic transport characteristics
are governed by this eigenmode. As such, transport characteris-
tics may be inferred from the dominant strange eigenmode
rather than the full solution of the scalar advection equation,
greatly simplifying analysis.

The aim of this work is to utilize the composite spectral method
to quantify and optimize heat or mass transfer over 2 for both
Newtonian and non-Newtonian fluids within a particular flow de-
vice. As temperature homogenisation is generally of primary
industrial concern for heat transfer, and insulated boundary condi-
tions are inherent for mass transfer, to generalise we consider sca-
lar transport here with (possibly inhomogeneous) Neumann
boundary conditions. The flow device under consideration is a cha-
otic mixing device, the Rotated Arc Mixer (RAM) [11], which con-
tains a number of tunable design and operating parameters, and
can continually process fluids at an industrial scale. Two fluids
are investigated; a high viscosity Newtonian fluid and a yield
stress, shear thinning fluid. The former case quantifies transport
enhancement for highly viscous but rheologically simple materials,

/\

whereas the latter relates to particularly problematic materials as
the plug flow regions inherent to yield stress fluids present natural
barriers to transport. To quantify transport enhancement, we com-
pare the RAM with that for a straight tube with the same boundary
conditions, and compare optimised scalar transport and energy
requirements for both rheologies. This study demonstrates both
applicability of the composite spectral method to industrially rele-
vant problems, and furthermore quantifies the potential for chaotic
advection to enhance heat and mass transfer within highly viscous
and non-Newtonian fluids.

In the following section, the RAM geometry and control param-
eters are reviewed, and the relevant governing equations outlined.
In Section 3 the solution method is outlined, followed by the New-
tonian and non-Newtonian analyses in Sections 4 and 5, respec-
tively. These results are summarised in Section 6 and conclusions
are presented in Section 7.

2. Problem definition
2.1. RAM geometry and parameters

As a detailed description of the RAM and its operational prin-
ciples are given in Metcalfe et al. [11], only a brief summary of
the device and geometry is given here. A schematic of the RAM
is illustrated in Figs. 1 and 2 depicting the RAM geometry, de-
sign and operating parameters. In brief, the RAM consists of an
inner cylinder of inner radius R through which the fluid flows,
and tightly wrapped around this is an outer cylinder which ro-
tates at fixed angular velocity Q. Regular apertures are cut into
the inner cylinder of arc angle A4 and length L, such that at
the end of one aperture (in axial direction), another is cut imme-
diately afterwards, offset by angle @, resulting in a reoriented
duct flow [19]. Rotation of the outer cylinder imparts a trans-
verse flow in addition to the axial flow along the inside of the
inner cylinder. Each “cell” of the RAM corresponds to an aper-
ture, and each cell experiences a combination of these axial
and transverse flows. From cell to cell, this basic flow is simply
reoriented by the offset angle @. If U denotes the average axial
velocity, then the ratio of timescales between the axial to trans-
verse velocities is defined as

QL
p=7 (1)

The set of three flow control parameters 8, 4, ® determine mixing
conditions within the RAM, along with the usual rheological, iner-
tial, and surface parameters of the fluid. Diffusion introduces a fur-
ther parameter quantifying the timescale between advection and
diffusion, namely the Peclét number Pe, which scales linearly with
rotation rate Q:

Apertures in inner cylinder

FLOW {

Rotating outer cylinder

e )

Stationary inner cylinder

Fig. 1. Rotated Arc Mixer schematic.
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Fig. 2. Rotated Arc Mixer geometry and parameters.

 Volp QR

where Dy is the scalar diffusivity and Vj, Lo are the characteristic
transverse velocity and length scales. This set of four control param-
eters {j,4,©,Pe} govern heat and mass transfer within the RAM,
and it is these parameters which may be adjusted to optimise scalar
transport.

2.2. Governing equations

Metcalfe et al. [11] show experimentally that for both Newto-
nian and non-Newtonian (but not viscoelastic) fluids, the relative
thickness of the transition region between cells with respect to
the aperture length L is negligible for Reynolds numbers Re < 50.
This does not represent a practical limitation as the RAM is de-
signed to operate with viscous-dominated flows. In essence the
so-called “two and a half dimensional” formulation [11] ignores
transition flows at cell boundaries within the RAM; consequently,
the flow field in each cell is considered two-dimensional. The extra
“half dimension” refers to the fact that the transverse and axial
flows can be coupled via the rate dependant non-Newtonian vis-
cosity. The solution method utilized herein is quite general, and
may also be applied to Hamiltonian 2D flows, time-periodic and/
or spatially periodic 3D flows. Cases involving time-periodic mov-
ing boundaries are also applicable, details can be found in Lester
et al. [8]. Under the 2.5D assumption, the RAM velocity field can
be considered piecewise constant in z, and so the full RAM velocity
field u(r,0,z) can be mapped from the velocity field in the first cell,
v(r,0) as

u(r,0,z) = v<r, 0-0) Hiz- kL)) ; 3)
=1
where H is the Heaviside step function. This mapping yields signif-
icant simplifications as not only does solution of the cell velocity
field v reduce to a 2D problem, but furthermore v is independent
of the parameters @ and L (or B in dimensionless form). For rational
values of @/r, the full RAM velocity field u is z-periodic with peri-
odicity jL for some integer j.

For both rheologies, the steady, incompressible, non-buoyant
flow is driven transversely by the rotating outer sleeve of the
RAM and axially by a constant axial pressure gradient C,, with
non-slip boundary conditions throughout. The pressure field p is
of the form p = P(r,0) + C,z. The cell velocity is v is governed by
the continuity and Navier-Stokes equations

V.v=0, 4)
pv-Vv=V.(2no)—- Vp, (5)

where g =1(Vv + (Vv)") is the rate of deformation tensor, 1(7) the
fluid viscosity, y = V20 : ¢ the shear rate, and p the fluid density.

For the Newtonian fluid the viscosity # is constant, whereas for
the yield stress shear thinning non-Newtonian fluid, a Herschel-
Bulkley (HB) rheological model is employed, with shear yields
stress 1y, fluid consistency x, and flow index n:
LT cn

nep) ==+t (6)
Denoting the fluid temperature (for heat transfer) or species con-
centration (for mass transfer) over the 3D RAM as ¢(X), transport
of ¢ is described by the steady ADE

V- (ug) =DoV*¢ +f(x), (7)
subject to the inlet and wall boundary conditions

¢(r7 07 O) = ¢O(r7 0) (8)
0|

E ik - g(072)7 (9)

where f and g, respectively, are the domain and boundary source
terms. We split the solution to (7) into fully developed ¢ and zero
mean ¢ solutions, such that for f, g=0, lim,..¢ — 0, and
¢ = (¢o), where () denotes averaging over r, 0.

As the ADE is linear, non-dimensional analysis provides signifi-
cant generalisation of the results. Indeed, for a Newtonian fluid in
the Stokes limit, a non-dimensional formulation is universal,
whereas for the HB fluid, the analysis is general across cases where
the dimensionless cell fluid velocity is constant (these cases can be
found by non-dimensionalising the HB model (6) and momentum
equation (5) as per Speetjens et al. [19]). Introducing the scalings
r=r/R z =zQ[U,u, = u, /U, u,, = u,,/(QR), ¢ = ¢ and substitution
(upon dropping primes) of these and the continuity equation (4)
gives the non-dimensional scalar transport equation (STE)
050~ Vs Vit (), (10)
where the axial conduction term % is ignored under assumptions
that L ~ R and that transverse temperature gradients dominate over
axial gradients due to the transverse velocity in the RAM. Schneider
[17] suggests this assumption is valid for axial Peclét numbers
Pe,x = UR/Dg > 100, as is the case for the flows considered here. In
cases where this term is significant (such as heat transfer in mi-
cro-channel flow [15]), with minor modification (extension to a
nonlinear eigen problem), the spectral analysis is still applicable.

In summary, scalar transport representing heat or mass transfer
in the RAM is described by the dimensionless STE (10), coupled via
the RAM velocity field u to the mapping (3) and Navier-Stokes (4)
and (5) equations. The RAM control parameters 4, ©,  character-
ize the dimensionless advective field for a given fluid, and the
Peclét number Pe quantifies the relative timescale of advection
and diffusion. Maximisation of scalar transport in the RAM
represents an optimisation problem over this control parameter
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set {4,0,,Pe} for a given fluid rheology. This set of design and
operating parameters form a four-dimensional space which govern
the scalar dispersion characteristics of the device.

Following previous investigations [11,8,19], we consider
A =m/4 only, as this aperture opening angle appears to be close
to optimal for a wide range of fluids, however, consideration of
other aperture opening angles simply represents increased compu-
tational effort. Theoretical analysis [22] and numerical results [8]
indicate that the optimized transport enhancement rate increases
monotonically with Pe, and so scalar transport is expected to be
optimal in the limit 2 — co. However, as the RAM is a viscous mix-
ing device, there exists a practical limit of Re,,x ~ 50 [11], beyond
which the transverse flow achieved by the rotating outer cylinder
no longer penetrates significantly into the flow cavity, and mixing
is severely retarded. This corresponds to an upper limit in Peclét
number of

Pemax = RemaxPr = Remax Dl, (11)
o

where v is the kinematic viscosity, and Pr is the (heat or mass) Pra-
ndtl number, a material property. To address this generality, we
consider a moderate Peclét number of Pe = 10> here, which corre-
sponds to a fairly high scalar diffusivity Dg=2 x 107> m?s~' for
species in a fluid such as water. These results herein are interpreted
with the understanding that further improved scalar transport is
possible at higher Pe, however, the optimal set of remaining param-
eters {f, ©} may be different. As the kinematic viscosity is typically
much larger for highly viscous or non-Newtonian fluids, and the
scalar (heat or mass) diffusivity typically lower, a much higher
Pe.x (and hence transport enhancement) may be achievable for
such materials.

Optimisation of heat or mass transfer in the RAM for 4 = /4
and Pe = 10® corresponds to maximisation of scalar transport rate
(governed by (10)) over the control parameter space 2: {8,0} =
[0,00) x [-m, ). To perform this optimisation, a universal metric
to characterise scalar transport for various scenarios, e.g. heat
and/or mass transfer, inlet conditions and different possible
boundary or domain sources is derived below.

3. Solution method

As the RAM cell velocity v is independent of both ¢ and the
parameters {®,p}, the Navier-Stokes equations need only be
solved once for each fluid rheology. Subsequently the RAM velocity
field u can be constructed via the mapping (3) for any choice of 8
and @, and solution of the STE (10) performed.

For the Newtonian fluid rheology, the RAM cell velocity field v is
analytic, where the transverse velocity field is given by Hwu et al.
[5], and the axial velocity distribution is the parabolic profile for
laminar tube flow. The 2D steady Navier-Stokes equations (4)
and (5) for the Herschel-Bulkley fluid are solved numerically using
the commercial CFD package CFX-10, where a series of increasing
refined meshes is used to establish convergence and accuracy of
the solution. To ensure incompressibility is satisfied, the cell veloc-
ity in both cases is expressed as v = €, x V¥, + v,€,, where &, is
the axial unit vector and ¥,, the transverse flow stream function.
This formulation also facilitates computational savings when per-
forming spectral expansion of v [8].

Given solution of the RAM velocity field u, an efficient meth-
od is required to solve the scalar transport equation over 2.
Solutions of the STE (10) may be cast in terms of strange eigen-
modes, which in essence are the Floquet modes of the periodic
steady 3D system (the dimensionless RAM velocity is gj-periodic
in z). Liu and Haller [9] have established existence and conver-
gence of these solutions under reasonable conditions, providing
a mathematical basis for decomposition of solutions of the ADE

into a finite number of superimposed strange eigenmodes and
an arbitrarily small fast-decaying non-eigenmode term. As such,
the zero mean part of the dimensionless scalar field may be rep-
resented as

K
BX) =D e (X) e + 0(e ), (12)
k=0

where ¢, (X) is the kth strange eigenmode (which is fj-periodic in
z), /i is the associated decay rate, o is the weighting due to projec-
tion onto the initial condition ¢g(r,0), and the final term is the non-
eigenmode contribution. Strange eigenmodes may also be complex,
the pattern in which case has spatially quasiperiodic or subharmon-
ic eigenmodes, depending upon whether Im(/;) is rational with
respect to 7/p.

3.1. Quantification of scalar transport enhancement

To derive a universal metric for scalar transport enhancement
within the RAM, performance is compared with a reference case
of simple tube flow with the same scalar boundary conditions.
For each rheology, we consider the same fluid flowing with the
same mean axial velocity U in a tube of the same dimensions as
the RAM. As such, transport enhancement in the RAM can be cor-
related with the energy difference associated with driving of the
transverse flow and different axial pressure gradients. For simple
tube flow the scalar transport equation (10) is

¢ 1
u,(1) 2" Pe
subject to boundary conditions (8) and (9). The axial velocity u,(r) is
dependant upon the fluid rheology; this problem is well studied
[18] for the Newtonian case. If Zy(r,0), —&, respectively, denote
eigenfunctions and eigenvalues of the operator 1/u,(r)VZ,, then
solutions to (13) for f, g=0 are of the form

V?¢ +f(X) (13)

o0 .
$X) =D N E(r 0)e %, (14)
=0
where v, is the projection of the zero mean initial conditions onto
the kth eigenfunction. These results serve a basis for quantification
of scalar transport enhancement in the RAM; we consider the fol-
lowing distinct cases:

e Homogenization of an initial scalar distribution with no domain
or boundary sources; i.e. diffusive mixing or insulated heat
transfer.

e Continual homogenization of the scalar field with a domain
source; i.e. insulated heat or mass transfer with an internal heat
or mass source.

e Transition to a fully developed profile for inhomogeneous
boundary conditions; i.e. heat transfer with fixed heat flux at
the boundary.

Any heat or mass transfer problem with prescribed (homogeneous
or inhomogeneous) Neumann boundary conditions is covered by a
combination of these problems, and so we wish to derive a univer-
sal metric for scalar transport enhancement for these cases.

3.1.1. Homogenization of initial conditions

For the first case, strange eigenmodes dictate the rate of decay
of the initial distribution to the homogeneous state ¢ = 0 (where
&= ¢ — ¢ = (¢o)). With increasing z (i.e. downstream distance),
the slowest decaying eigenmode dominates, so the asymptotic sys-
tem dynamics may be approximated by this eigenmode
lim $(X) = $..(X) = to@y(X) e 7%, (15)

Z—0
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Hence, /o is the lengthscale of asymptotic decay of inhomogeneities
in the scalar field ¢. As the slowest decaying eigenmode is also the
most regular [9] (i.e. lowest variance), there is a natural tendency
for the majority of initial data to be projected onto this mode, so
in most cases |uo|Z|o| for all ko. Therefore, convergence of
¢ to ¢, with z (quantified as oo e~%2| > |0y e~Z| for all k) is rapid,
and the dominant strange eigenmode accurately quantifies trans-
port a short distance downstream. As most industrial processes
are concerned with dispersion to a near-homogeneous state, it is
ultimately the lengthscale /o that is of importance regardless of
small-z dynamics. Similarly for the reference case of simple tube
flow, the asymptotic dynamics are

e (X)

and so the lengthscale of asymptotic scalar decay in this case is
Eo/Pe. Consequently, we define the scalar transport transfer
enhancement factor g for the RAM as

Re(29)Pe
<
In practical terms, in the asymptotic limit a tube with Neumann

boundary conditions needs to be g times longer to achieve the same
degree of scalar homogenization as the RAM.

lim ¢(x) =

Z—00

= V9Z0(T,0) e’ﬁz (16)

q (17)

3.1.2. Homogenization of domain sources

For the case of domain sources terms (i.e. heat, mass sources)
with zero initial conditions and insulated boundary conditions,
the scalar distribution ¢ can be split into average ¢ and zero mean
¢ (where (u,¢) = 0) contributions, where

o= [ (F®az. Fix = - (P20, (18)

uZ z

and

1 .
u, —Wrp-Vigd+ Pe Vf,(;d’ +f(x),

%
%
or

) (19)

= 0,$(r,0,0) = 0.

r=1

In this case the RAM acts to homogenise the scalar field ¢, and so ¢
quantifies the scalar transport rate. The evolution of ¢ in (19) is
again dictated by strange eigenmodes, which are continually ex-
cited by the zero mean source f:

B0 =3 ( / ﬂ(u)e"*”du) Pu(x) e, (20)
where
K
— S F@)gux). 1)
k=0

Note tt}at if f is constant in z, Fi(z) has the same periodicity as ¢y,
and if f is bounded, Fi(z) is likewise. Eq. (20) can be expressed as

K oo ¢ qy\n )
=33 CU RV @) - Y0 e ] gy, (22

where the superscript (n) denotes the nth derivative. The left hand
term in the square brackets above represents a long-z solution, and
the right hand term represents a developing solution. Similar to the
initial conditions in (15), more of the source term f is projected onto
the most regular (slowest decaying) eigenmodes, and so again there
is a tendency for |F{"(2)|Z|F\" (2)| for all ko and n. Furthermore, as
Jo > J¢ also, both the developing and long-z solutions are domi-
nated by contributions from the dominant eigenmode (k = 0). The

long-z solution persists for non-vanishing f (x), and is approximated
as

lim ¢(x) =

Z—0

00 n
300~ Y Y @00 3)
n=0 70

Therefore, the magnitude of persistent inhomogeneities in ¢.. scale
at minimum linearly with 1/, and also the lengthscale of exponen-
tial decay to this state is dominated by /.

For the reference case, the average ¢ contribution is the same as
for the RAM, whereas the zero mean ¢ contribution is

b(x) :2 </ Gi(u ePe“du> Ei(r,0)e e

ke Pe ® . (24)
- ; ;(71) (?k) [Glc (Z) - Gk (O) e_ﬁz] Ek(r, 9)7
where
fog _ i G(2)E(r, 0). (25)
Uz k=0

For this case the magnitude of persistent inhomogeneities in ¢..
scale at minimum linearly with Pe/¢o, and also the lengthscale of
exponential decay to this state is dominated by &y/Pe, so again rel-
ative scalar transport enhancement is characterised by q (17).

3.1.3. Scalar flux through domain boundary
In the case of heat transfer with fixed heat flux boundary and
zero initial conditions, it is necessary to split the temperature dis-
tribution ¢ into fully developed ¢(r,z) and developing ¢(r,0,z)
solutions as
RUREN (R o

r=1

az ror\ or or

¢ -1 . -
uz£ =—Uy- vr,()d’ + Fevf()(b =Wy vr.()¢> (27)
op| . - o
5 . = 07 (rb(r’ 0<O) - _¢(r70)7

where —u,, - V, ¢ represents a zero mean source for ¢. For Newto-
nian fluids, the developed solution ¢ is the same as for straight tube
flow (as u, is the same)

o(r,2) :g<r2 —;+22—%>‘ (28)

At large z the bulk ¢, = (u,¢) and average wall developing temper-
atures ¢w = (¢l,_,), are zero, and so for a Newtonian fluid the clas-
sic fully developed Nusselt number Nu,, for tube flow is recovered
Nu. —lim— 2§ __28 48 (29)
=0 Py =Py pw—p 11

For any rheology, ¢ comprises of the decaying initial conditions
(projected onto o), as well as the continual excitation of the eigen-
modes via the source term (projected onto Fy)

K

300 =3 (s+ [ Futwerdu)g,e . (30)

k=0

and so convergence of the Nusselt number can be determined by
substitution of ¢

1 1 - oz
Nu(z)fﬁ_ kZO:A “ (31

where Ai(z) is a periodic function and hence bounded. Again, the
lengthscale of convergence to Nu., is dominated by .
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For the reference case, the developing solution is of the same
form as Eq. (14), where now the initial conditions are the same
as those for Eq. (27). Convergence of the Nusselt number for this
case is then given by the classic solution [18]

1 1 _(Z) Pez
Nu(z) Nu, 47-Cng)k/ Er(1,0)doe” (32)

so the lengthscale of convergence is dominated by &p/Pe.

In all of these cases, to leading order the dominant eigenvalue
Jo quantifies the rate of scalar transport in the RAM. For specific
cases, the full spectrum /, (and associated projections onto ¢y)
captures the exact scalar transport rate, however, as there is a
tendency for most initial and source (both boundary and do-
main) data to be projected onto the dominant eigenmode
®o(X), Ao serves as a universal metric for scalar transport which
is near exact in the limit of large z, and dominant for small z.
Likewise for the reference case of simple tube flow, &/Pe quan-
tifies scalar transport in all cases to leading order, and so the
enhancement factor g serves as a natural universal metric for
quantifying transport enhancement in the RAM. As such, optimi-
sation of scalar transport in the RAM can be performed with re-
spect to g, and a method to resolve the distribution of g over 2
is outlined below.

3.2. Composite spectral method

The composite spectral method [8] rapidly calculates the
strange eigenmodes of the unsteady advection diffusion equation
with time-periodic advective velocity. With minor modification,
this method can also be applied to the steady ADE (10) with an axi-
ally periodic advective velocity field. In essence, the axial coordi-
nate z replaces time, and the formulations would be identical if
the axial velocity u, were plug flow. Following Lester et al. [8],
spectral expansion and truncation of (10) in terms of transverse
(r,0) Laplacian eigenfunctions with Neumann boundary conditions
results in a linear ODE system for the vector d(z) of spectral
coefficients

B — (H - D)o, (33)

where B(z) is the axial advection operator u,, H(z) is the transverse
advection operator —u,,-V,,, and D is the transverse diffusion
operator V7,. Due to the cell-wise nature of the RAM model (as re-
flected in the mapping (3)), B(z) and H(z) are both piecewise con-
stant in z, and the system may be cast as

Cil_‘: =B(z)" (H(z) - %D)(D =A@2)®. (34)

The spectral advection-diffusion operator A(z) is also piecewise
constant, consisting of a reorientation by angle @ every dimension-
less length $: A(z+ ) = Rg - A(z), where R, is the operator associ-
ated with a rotation of angle 0. Solutions to the spectral system
(moving with the aperture window as a frame of reference) are of
the form ®(z) = S(z) - ®(0), where the solution matrix is

S(ip) =Mge -S((i—1)B), S(0)=1, (35)
and
M;o =R, - exp(BA(0)). (36)

Due to the symmetry of repeat applications of My e, the dominant
strange eigenmode ¢ and decay rate /g for any values of g and ©@
are given by the dominant eigenvectors and eigenvalues of M.
As such, resolution of the asymptotic scalar transport rate over 2
corresponds to construction of Mye via (36) and solution of the
dominant eigenvectors and eigenvalues for all values of f and ® un-

der consideration. Efficient methods to achieve this are detailed
in [8].

For non-Newtonian fluids, potential asymmetry of the axial
velocity profile in the RAM results in violation of continuity (4)
when rotated cells are joined during mapping (3) of the full RAM
velocity u from the cell velocity v. To address this problem, the
transition flows at cell interfaces are approximated by determining
the 3D transition flow v (X) from a RAM cell to a regular tube to a
distance z,; downstream where the velocity is negligibly different
from the symmetric tube solution v, = v,(r), v,y = 0. Conceptually,
this flow and its z-reflection are welded to each end of the RAM cell
velocity v, so the resultant flow is axisymmetric at each end

Vu (T, 0,2y — 2), 0<z<zy,
v(r,0), Zy < Z< P+ Zy, (37)
Vi(r,0,2— 2z — B), B+zr <z< P+ 2z,

and so may be rotated and joined for all ®, g as per (3) without vio-
lation of continuity. By “switching off” diffusion in the transition re-
gions, z,; can be made infinitesimally small without affecting scalar
transport, reflecting experimental observations [11] that the transi-
tion region is negligibly small for such flows. Although this compo-
sition only approximates the actual transition flow between cells
(which is ® dependent) in the RAM, such flows exhibit similar char-
acteristics, i.e. rapid transition to an axisymmetric state then tran-
sition to the asymmetric state in the proceeding cell [11].

In terms of computation, all that is required is the spectral
advection operator S;; which transforms the asymmetric RAM cell
velocity to symmetric tube flow, and only needs to be calculated
once. Spectrally expanding the advection operator for the transi-
tion flow (—v¥,/v¥") -V, as A (2), S is approximated as the first
term of the Magnus expansion [10] which may be simplified as

St ~ exp < /0 - A« (2) dz> = exp(fu), (38)

where f; is the spectral expansion of —( [5" v, /vidz) - V. Solu-
tion of the dominant strange eigenmode q;o and decay rate /g pro-
ceeds as above, where M; o is now

Mo =Ry 'St’ll -exp(fA(0)) - S (39)

4. Newtonian analysis

As the non-dimensional formulation for a Newtonian fluid in
the Stokes regime is completely general, prescription of dimen-
sional quantities (required for calculation of energy requirements)
is deferred until Section 6. In the limit Re — 0, the transverse cell
velocity is analytic, as per Hwu et al. [5] (streamlines are illustrated
in Fig. 3), and the dimensionless axial velocity profile is parabolic;
u,(r) = 2(1 —r?). We first consider the reference case of scalar
transport in a tube (13) with homogeneous Neumann boundary

Fig. 3. RAM cell transverse flow streamlines (left) and superimposed streamlines
(right).
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conditions. Ignoring axial diffusion, the eigenfunctions of the
advection diffusion operator Vfﬁ(, Ju(r) are

~imnr?

B(r,0) = % cos(nb),

sin(no),

e (40)
where % is the generalised Laguerre polynomial, n=0,1,2,..., and
&mn are eigenvalues of the operator. Here the dominant eigenvalue
depends on whether asymmetric solutions are considered. Siegel
et al. [18] considered the axisymmetric (n = 0) case, and found the
dominant eigenvalue to be &y = 12.840, however, there also exists
a more slowly decaying eigenvalue g1 =4.161 for the asymmetric
case. The choice as to which eigenvalue to use as a reference is
application dependant; &g is relevant to problems such as heating
of a fluid with initially uniform temperature and constant wall heat
flux, whereas &g is relevant to homogenisation of a fluid with an
asymmetric initial conditions and insulated boundaries, such as dif-
fusive mixing. We choose the axisymmetric eigenvalue as the worst
case scenario, and so it is possible to retard scalar transport in the
RAM by transferring scalar variance from axisymmetric initial con-
ditions to a slower decaying asymmetric eigenmode. A lower bound
for q is given by &p /&1 = 0.324.

The dominant strange eigenmode ¢,(x) and associated decay
rate o for the Newtonian case is determined using the spectral
method of Lester et al. [7,8] over the parameter space 2: {0, } =

B

1000

[-7, 7] x [0.01,1000], at Pe = 103, with q calculated and plotted in
Fig. 4. This plot has around 1.7 x 10° points (where the dominant
strange eigenmode and associated decay rate are determined at
each point), and the total computation required 2.76 x 10° s on
an Intel® Xeon 3.00 GHz CPU. In contrast, using the same processor,
numerical solution of the ADE only for a single point in Q to similar
accuracy (to verify results of the spectral solution) using the CFD
software CFX 10.0 for z large enough to observe /o requires
2.3 x 10° s of computation. As such the spectral method is around
14,000 times faster to compute the global solution of Fig. 4; it is
this computational efficiency which facilitates detailed exploration
of the RAM control parameter space.

The scalar transport enhancement distribution in Fig. 4 is of
similar complex (fractal) structure to that of a Newtonian fluid
in a 2D RAM with Neumann boundary conditions [7]. The eigen-
modes at selected points within 2 are shown in Fig. 5. The white
region corresponds to that of negligible enhancement (q ~ 1),
and some regions of transport retardation are observed (e.g.
point (i)), associated with some transfer of variance to the
slower decaying asymmetric harmonic (&p1); note that the lower
bound of g~ 0.324 is not reached. Ridges of transport enhance-
ment are observed emanating from the =0 axis at rational val-
ues of @/m, with the strength of the tongues decreasing with the
denominator k for @ =2mj/k. Prior to collision of the ridges
around g =5, the strange eigenmodes on these ridges are ordered
and rotationally symmetric as depicted in Fig. 5(a)-(d). The large
gradients maintained in the programmed eigenmodes result in
enhanced transport; however, off the ridges the eigenmodes
are axisymmetric (e.g. Fig. 5(j)), and so scalar transport enhance-
ment is negligible (q ~ 1). Enhancement also occurs in the case
of no reorientation (® =0, Fig. 5(e)), but not to the same degree
as in the dominant ridges. An order/disorder transition occurs
around g > 5, resulting in greater transport enhancement in some
locations (e.g. (f), (g), and (h)) than the ordered solutions. These
points correspond approximately to the region of good mixing
for Newtonian fluids in the RAM in the advection only case
[11], where the Lagrangian dynamics are globally chaotic. There
exist several regions of locally optimal enhancement within 2
which are large enough to be considered parametrically robust.
As such, transport enhancement in these regions is resistent to
small perturbations arising from manufacturing imperfections,
operational fluctuations, and inaccuracies in control and moni-
toring devices.

Fig. 5. Strange eigenmodes within RAM for Newtonian fluid. (a)-(c) Symmetric eigenmodes on Arnol’d tongues at 8 =0.2, (d) and (e) non-symmetric eigenmodes at = 0.2,
(f)-(g) disordered eigenmodes over 2, (i) retarded scalar transport, and (j) axisymmetric eigenmode.
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The global optimum over 2 occurs at point (g) (Fig. 4), where
the scalar transport is enhanced almost sixfold (qmax = 5.814) over
the reference case. This significant enhancement means that a RAM
over 5.8 times shorter than a simple tube of equivalent diameter is
required to achieve the same scalar homogenisation of initial tem-
perature or species concentration distributions for insulated
boundary conditions, or transition to fully developed temperature
profile for the constant heat flux problem. It is clear from Fig. 4 that
detailed exploration of 2 is critical to the optimization process and
it is expected that most rapid optimization methods will fail in this
complex topography. As topographical complexity over the control
parameter space is ubiquitous for many dissipative chaotic sys-
tems [3], such characteristics are anticipated for all transport
enhancement devices which rely upon chaotic advection.

5. Non-Newtonian analysis

To determine the specific cell velocity v for the non-Newtonian
fluid, we consider a Herschel-Bulkley fluid with density p=
1000 kg m~3, yield stress of 7, =20 Pa, consistency x =20 Pas®3,
flow index n = 0.5 flowing within a RAM of radius R = 0.05 m win-
dow opening A = 1t/4, outer sleeve rotation rate 2 =1 Hz, with ax-
ial pressure gradient C, = 2000 Pa m~'. As such, the results herein
can be generalized across cases where the dimensionless cell
velocity is the same, as per the scalings of Speetjens et al. [19].
CFD results for the Herschel-Bulkley RAM cell velocity (5) are
shown in Fig. 6. The cell window is centered at the 3 o’clock posi-
tion, where the transverse velocity is maximum. At the cell centre
and the centre of the circulation region the local shear rate is zero
(Fig. 6(c)) and no local transport enhancement occurs here. How-
ever, the angular offset @ between cells means that fluid elements
may experience shear in subsequent cells. These results form the
basis for construction of the full RAM velocity field u, parameter-
ised by g and @. Coupling of the axial and transverse flows via
the non-Newtonian viscosity is apparent in Fig. 6(b), where the
angular asymmetry arises from shear thinning of the fluid near
the aperture window.

From the CFD calculations, the average axial velocity for the
RAM cell is U=002116ms . A pressure gradient of
C,=2137.18 Pam™' is required to achieve the same U for the
non-Newtonian fluid under regular tube flow, where the axial
velocity v,(r) is

CpR-21y)° 2
i) 4 0<r<,
Ul R-DI - R -+ (R -1) Sy, Z<r<R
K2 2K2 1220 G T N

(41)

As for the Newtonian case, this velocity profile is used to determine
the lengthscale of asymptotic scalar transport for the non-Newto-
nian fluid in the reference case of tube flow. As analytic eigenfunc-
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Fig. 7. Scalar transport enhancement q for the Herschel-Bulkley fluid in the RAM at
Pe =103,

tions of the operator V2 /u,(z) are unknown, these are calculated by
spectral analysis in the r-coordinate only as the dominant axisym-
metric eigenfunction is used as a reference. The dominant axisym-
metric eigenvalue is ¢po=14.334, and scalar transport
enhancement of the RAM for the non-Newtonian case is again
quantified as per (17).

The dominant strange eigenmode ¢,(x) and associated decay
rate o for the non-Newtonian case is determined over 2 at
Pe =102 at similar computational expense as the Newtonian case.
Once calculated, the additional overhead of including S;; in (39)
is negligible. Distribution of q over 2 is depicted in Fig. 7, and many
of the qualitative features (localised ridges, order/disorder
transition, localised optima) are similar to that of the Newtonian
case (Fig. 4). However, the eigenmodes are now asymmetric at
low B off the ridges (Fig. 8(d)) resulting in transport retardation
(q=0.882).

As the axial velocities between the RAM and reference cases are
different, the contour g =1 has no particular physical significance
aside from demarcating the threshold beyond which the RAM be-
gins to enhance scalar transport. Some transport enhancement oc-
curs for the rotationally symmetric eigenmodes (Fig. 8(a)-(c)) on
the ridges, but again optimal transport occurs in the disordered re-
gion, where more striated eigenmodes (Fig. 8(f)-(j)) occur, some of
which are quasi-periodic. In contrast to the ordered solutions
(Fig. 8(d) and (e)), the patterns associated with these local optima
((f), (g), and (i)) do not exhibit evidence of transport barriers asso-
ciated with the plug flow region (Fig. 6(c)) of the HB fluid. As such,
appropriate cell reorientation in the RAM flow is capable of trans-
porting fluid elements (and hence ¢) out of this region. The main
point of interest in Fig. 7 is (i), where scalar transport is enhanced
more than threefold (qmax = 3.347) over the reference case of the
same fluid flowing in the same geometry.

ear Strain Rate
Contow 11

Fig. 6. RAM cell (a) transverse velocity distribution and streamlines, (b) axial velocity distribution, and (c) shear strain rate for non-Newtonian fluid within RAM cell.
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Fig. 8. Strange eigenmodes within RAM for Herschel-Bulkley fluid. (a)-(c) Symmetric eigenmodes on Arnol’d tongues at = 0.2, (d) and (e) non-symmetric eigenmodes at
B =0.2, (f)-(j) disordered eigenmodes over 2, and (i) corresponds to optimum scalar transport.

6. Results and discussion

To determine both the cost and magnitude of scalar transport
enhancement in the RAM, the energy requirements of each device
for each fluid rheology must also be considered. These are calcu-
lated for the non-Newtonian fluid rheology and RAM geometry
outlined in the previous Section. From the CFD results, the power
per unit length required to drive the outer sleeve of the RAM
for the non-Newtonian fluid is Py=0.1616 Wm™!, which in
addition to the axial work P,,=0.3324W m™! gives a total of
Pioc = 04940 W m~!. In comparison, axial power per unit length
for the same fluid at the same U in the tube is P,, = 0.3552 W m™',
so the RAM flow requires roughly 40% greater energy input. The
shear thinning nature of the Herschel-Bulkley fluid means that
the transverse work done by the rotating outer sleeve reduces
the axial work; this phenomenon is common as most pseudo-plas-
tic fluids are shear thinning.

To provide a direct comparison between the RAM flow and ref-
erence case for each rheology, we choose the Newtonian fluid vis-
cosity to be that such that U and G, match in the straight tube for
both fluids. The mean axial velocity U for the non-Newtonian fluid
(in both the RAM and tube) is 0.02166 m s~?, and an axial pressure
gradient of C,=2137.18 Pas™! in the tube is required to achieve
this velocity. From the Hagen-Poiseuille law, the Newtonian fluid
viscosity required to match U and C, is 1 =31.563 Pa s. This high
value demonstrates applicability of the RAM to process high vis-
cosity fluids and justifies analysis in the Stokes regime
(Re = 0.0866). From 7, the power per unit length to drive the axial
flow (for both the RAM and tube flow) is calculated as
Pax = TR?C,U=0.3552 W m~". An upper bound [11] for the power
consumption for the additional transverse flow in the RAM is
Py = nQRZA =0.0619 Wm!, giving a total of P, = 0.4172 Wm™ .

Table 1
Scalar transport enhancement and energy requirements for straight tube and RAM
processing Newtonian and non-Newtonian fluids

Rheology Newtonian Non-Newtonian

Device Tube RAM Tube RAM
U(ms™1) 0.02116 0.02116 0.02116 0.02116
Gy (Pa m ') 2137.18 2137.18 2137.18 2000
Pror (Wm™1) 0.3552 04172 0.3552 0.4940
Prel +17.5% +39.1%

Gmax 5.814 3.347

Preg —79.9% _58.4%

The mean velocity U, axial pressure gradient Cp, and total power
consumption per unit length Py, in both the tube and RAM under
each fluid rheology are summarised in Table 1. Defining P, as the
relative power consumption of the RAM per unit length as com-
pared to the straight tube, it is clear that energy requirements of
the RAM are modest, especially when compared to that of other
transport enhancement devices (e.g. static mixing elements,
twisted ribbon, etc.) within a cylindrical geometry for highly vis-
cous fluids. The increase in the non-Newtonian case is very modest
considering the yield stress nature of this fluid. Conversely, the
lengthscale of scalar transport enhancement (gmax) is very high
in both cases - almost sixfold in the Newtonian fluid, and over
threefold for the non-Newtonian fluid. For both the tube and
RAM, power consumption scales with device length, so the total
power required to achieve the same level of scalar transport is re-
duced in the RAM. These figures are reflected as P..;, where 79.9%
and 58.4% for the Newtonian and non-Newtonian fluid reductions
in total energy consumption are achieved in the RAM for the same
level of scalar transport. Whilst the operating costs of transport de-
vices scales with energy consumption, the fixed costs scale roughly
with device length, as quantified by gnax in Table 1.

7. Conclusions

Chaotic advection promises to enhance heat and/or mass trans-
fer within highly viscous or rheologically complex fluids, however,
optimisation is critical to realise these benefits. In this study, we
applied a novel spectral method [8] to quantify asymptotic scalar
transport (i.e. heat and/or mass transfer) within both Newtonian
and non-Newtonian fluids over the control parameter space of a
chaotic flow, the Rotated Arc Mixer (RAM). The non-Newtonian
fluid under consideration is a yield stress shear thinning fluid,
which is traditionally problematic for transport enhancement
due to the existence of plug flow regions. A generic metric for sca-
lar transport enhancement q is defined as the lengthscale ratio of
asymptotic scalar transport in the RAM against that for a straight
tube, which is universal for a variety of transport modes (homoge-
nisation of initial conditions, boundary and domain sources). The
distribution of q over the control parameter space is complex (frac-
tal), necessitating high resolution of 2 to identify the global opti-
mum, and study the global structure of transport in this system.

When optimised, the RAM acts as an efficient transport device
for both non-Newtonian and highly viscous Newtonian fluids. At
the moderate Peclét number Pe =10° the asymptotic transport
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rate increases against the reference by (m.x=5.814 and
(max = 3.347, respectively, for the Newtonian and non-Newtonian
fluids, corresponding directly to a reduction in device length of
(max to achieve the same scalar transport. These results are univer-
sal for the Newtonian case in the Stokes regime, whereas for the
non-Newtonian fluid they are general for all cases where the
dimensionless RAM cell velocity v is constant. Furthermore, the
improvements in scalar transport increase monotonically with Pe
(although the optimisation process may need to be repeated).
Although there exists a practical upper limit of Pey,,x ~ 50Pr based
upon the fluid Prandtl number, this is expected to be ©(10°—107)
for highly viscous materials. These improvements in transport
come at a cost of increased energy consumption, however, this is
moderate (+17% and +40%, respectively) for both the Newtonian
and non-Newtonian fluids. In contrast, static and in-line mixers in-
volve far higher relative energy consumption for laminar Newto-
nian flow (+500% [1] and +3600% [20], respectively), which
increases further for rheologically complex materials, and the
transport characteristics of these devices has been shown [11] to
be similar or worse than that of the optimised RAM.

The results herein demonstrate the ability of chaotic advection
to address difficult transport problems involving non-Newtonian
and highly viscous fluids and indicate prospects for design and
construction of low energy transport enhancement devices. In such
applications optimisation of the control parameters is of para-
mount importance; this is facilitated by the so-called composite
spectral method [8]. Although there exist a wide number [13,21]
of experimental and industrial low Reynolds number transport
enhancement devices based upon chaotic advection, the vast
majority of these do not have a large tunable parameter space
for optimisation, or they have not been globally and robustly opti-
mised over this space. In this study, it is the combination of a num-
ber of tunable control parameters with high-resolution global
exploration of the associated parameter space 2 which facilitates
exploitation of the potential of chaotic advection at the industrial
scale.
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